L'industrie aérospatiale, 14.0 et l'avenir du travail

Christian Lévesque, HEC Montréal

Sara Pérez-Lauzon, HEC Montréal Julie Garneau, Université du Québec en Outaouais

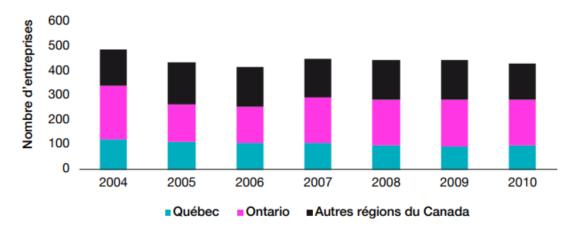
Plan de la présentation

1. Portrait de l'industrie aérospatiale

2.Évolution de l'écosystème aérospatial montréalais

3.L'industrie 4.0

4. Les défis de l'14.0


http://www.crimt.net/rapports/

1. Portrait de l'industrie aérospatiale

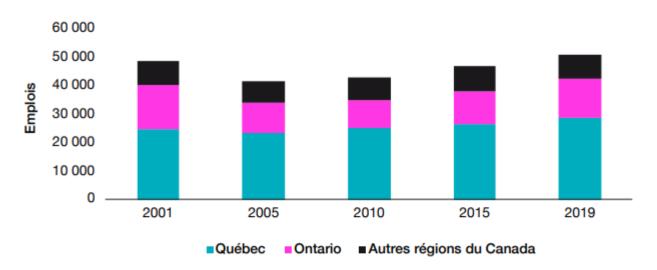
Le nombre d'entreprises dans l'industrie aérospatiale

FIGURE 4

Nombre d'entreprises manufacturières dans l'industrie aérospatiale par province (code 3364 du SCIAN)

Remarque : La publication des données sur le nombre d'entreprises a cessé après 2010 et l'ensemble des données a été entièrement archivé en 2012.

Source: Statistique Canada (2012)


Données les plus récentes pour le Québec (2022):

- ✓ Baisse de 10,2% du nombre d'entreprises entre 2019 et 2021
 Fins d'activités + fusions/acquisitions
- ✓ 2021: 70,5% entreprises ont 100 employés ou moins
- √ À l'automne 2021, 60,7% se déclarent à un niveau d'activités pré-pandémique

(Source: CAMAQ, 2022: 8-11)

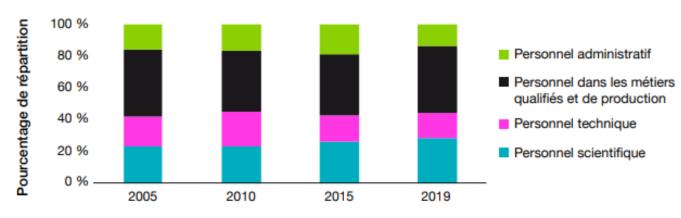
Les emplois dans l'industrie aérospatiale par province

FIGURE 5
Emplois dans l'industrie aérospatiale par province (code 3364 du SCIAN)

Source: Statistique Canada (2020b)

Données les plus récentes pour le Québec (2022):

√ - 30,2% des emplois dans les PME


COVID

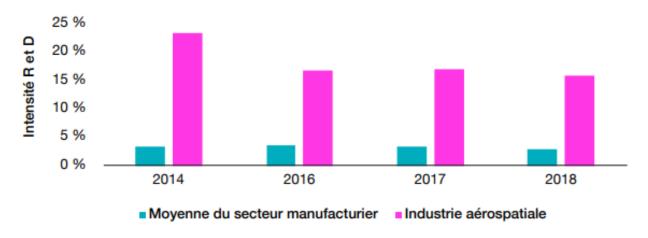
- √ 5000 postes perdus entre janvier 2020 et 2021
- ✓ Prévisions de croissance qui devraient mener à la récupération de 77,5% des emplois perdus au 1^{er} janvier 2023

(Source: CAMAQ, 2022, p. 4)

Répartition des emplois par catégorie de personnel -Québec

FIGURE 10 Répartition des emplois par catégorie de personnel dans l'industrie aérospatiale au Québec

Source: Données recueillies par les auteurs dans les rapports du CAMAQ (2005; 2010; 2015; 2019).


Données 2021- 2023:

√ 81,6 % des emplois créés entre 2021 et 2023 sont pour le personnel de métier (avec diplôme), le personnel scientifique et le personnel administratif

(source: CAMAQ, 2022, p. 11)

Investissements en R&D

FIGURE 6
Intensité de la R et D dans l'industrie aérospatiale par rapport à l'industrie manufacturière au Canada

Remarque: La « moyenne du secteur manufacturier » désigne la moyenne globale du secteur manufacturier au Canada (pour tous les secteurs manufacturiers), tandis que l'adjectif « aérospatial » désigne l'industrie aérospatiale (code 3364 du SCIAN).

Source: Calculs réalisés par les auteurs pour les fins de cette étude à partir des données de Statistique Canada sur le PIB (Statistique Canada, 2020a) et des chiffres de R et D dans le secteur manufacturier (Statistique Canada, 2020d) ainsi que des données d'ISDE et de l'AIAC relatives aux chiffres concernant directement la R et D (ISDE et AIAC, 2015; 2017; 2018; 2019).¹³

2. Évolution de l'écosystème aérospatial montréalais

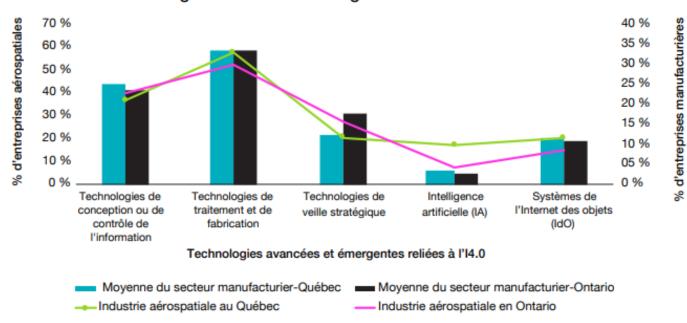
Évolution de l'écosystème aérospatial montréalais

	Temps 1 1980-1995	Temps 2 1995-2004	Temps 3 2005-2015	Temps 4 2016-2021
Enjeux de l'industrie	Déclin et pénurie de main- d'œuvre	Développement des compétences professionnels/ingénieurs et capacité d'innovation des PME	Coordination des actions et intégration des PME dans la CV	Capacité d'intégrer les nouvelles technologies Pénurie de de main-d'œuvre
Réponse de l'industrie	Comité paritaire patronal- syndical CAMAQ (1983) École des métiers EMAM (1994)	Association patronale AQA (1997) Consortium de recherche— CRIAQ (2000)	Aéro Montréal (2006) Programmes de rehaussement des capacités des PME (programme MACH)	Programmes d'accompagnement des entreprises vers l'14.0 au plan opérationnel et financier
Principaux acteurs	VP RH et représentants des syndicats	PME, grandes entreprises, Universités	Ensemble des parties prenantes	Grandes entreprises, PME, universités, l'État
Logiques institutionnelles	Développement de l'industrie Améliorer les compétences de la main-d'œuvre	Compétences : professionnels/ingénieurs Promotion de la R&D via la collaboration entre les grandes entreprises, les PME et les universités	Développement des capacités des PME Optimiser l'avantage concurrentiel de l'industrie par la coordination des actions entre les différents intervenants	Développement des capacités d'innovation de la CV Recrutement et rétention des talents

3. L'industrie 4.0

L'industrie 4.0

Qu'est-ce que l'industrie 4.0 ?


- « Une nouvelle approche pour contrôler les processus de production en fournissant une synchronisation en temps réel des flux » (Kohler & Weisz, 2016).
- Les données sont un moteur essentiel de I4.0, et la gestion algorithmique est l'outil nécessaire pour gérer les données

Qu'est-ce que la gestion algorithmique ?

 « Un ensemble diversifié d'outils et de techniques technologiques permettant de gérer à distance la main-d'œuvre, en s'appuyant sur la collecte de données et la surveillance des travailleurs pour permettre une prise de décision automatisée ou semi-automatisée » (Mateescu et Nguyen, 2019 : 1)

Diffusion des technologies avancées

FIGURE 8
Utilisation de technologies avancées et émergentes de l'I4.0 au Québec et en Ontario

Remarque: « La moyenne du secteur manufacturier » désigne la moyenne globale du secteur manufacturier au Canada (pour tous les secteurs manufacturiers), tandis que l'adjectif « aérospatial » désigne l'industrie aérospatiale (code 3364 du SCIAN).

Source: Statistique Canada (2017)

Progression de l'14.0

FIGURE 9

Progression de l'14.0

Capture et formatage de données

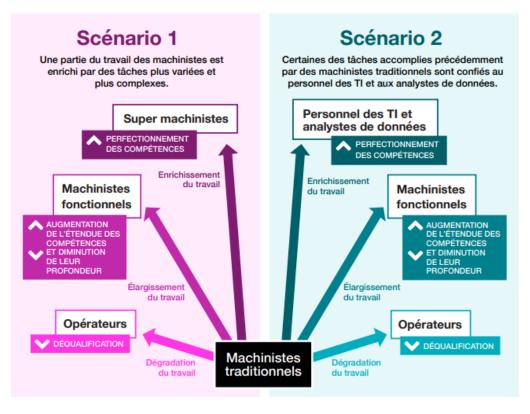
Les entreprises perfectionnent leur infrastructure technologique pour la production et la collecte de données.

Interconnexion des systèmes

Intégration des technologies numériques de base, ce qui permet l'interconnexion de machines.

Connexion des systèmes et des équipes de travail

Les technologies numériques permettent l'interconnexion des périphériques et des équipes de travail afin de produire des données en temps réel en appui au processus décisionnel.


Opérationnalisation d'un système intelligent

Système intelligent qui utilise les données pour prendre des décisions et faire des prévisions en temps réel.

Source : Création des auteurs

La transformation du travail de machiniste

FIGURE 11
La transformation du travail de machiniste traditionnel

Source : Création des auteurs

4. Les défis de l'industrie aérospatiale

L'avenir du travail et des compétences : perceptions et attentes

Les gestionnaires et les travailleurs sont d'accord sur les effets du 14.0

- ■Augmentation de la prise de décision automatisée = moins d'autonomie
- ■Diminution de la variété du contenu des tâches= emplois moins stimulants.
- ■Utilisation de connaissances codifiées
- Surveillance automatisée, en temps réel et à distance

Les attentes des travailleurs.euses

Tâches stimulantes avec possibilités de résolution de problèmes

Autonomie et marge de discrétion

Capacité à utiliser leurs connaissances tacites et leurs compétences

Supervision personnalisée

Le dilemme de l'industrie:

Comment attirer une maind'œuvre qualifiée alors que l'14.0 crée quelques emplois très attrayants nécessitant des compétences élevées, mais également plusieurs emplois peu qualifiés?

Les défis de l'14.0

Constats

- 1. Il existe des écarts importants entre les entreprises dans l'adoption de l'14.0.
- 2. Les entreprises ne peuvent relever seules les défis de l'1 4.0
- 3. Les incidences de l'14.0 sur le travail et les compétences sont assez variables

<u>Défis</u>

- 1. Assurer un financement spécial et des programmes proactifs pour soutenir la transition vers I4.0.
- 2. Pérenniser les mécanismes qui favorisent la collaboration et la coordination entre les diverses parties prenantes afin de produire des ressources collectives propices au développement de l'14.0
- 3. Impliquer les travailleurs et leurs représentants afin de créer des emplois de qualité susceptibles d'attirer les talents